Plasmids/Vectors and DNA Libraries

Plasmids/Vectors

• **Plasmid/Vector** - Self replicating, extrachromosomal (separate from the large chromosomal DNA) DNA molecules found in all bacterial species.
• Plasmid replication may be independent of the cell cycle.
 – Results in hundreds of plasmid copies per cell.
Plasmids/Vectors

- Most prokaryotic plasmids are double-stranded circular DNA molecules.
- The size of plasmids varies widely, from several kilobases to hundreds of kilobases.
- They are not essential for cellular functions.
- In nature plasmids contain a variety of genes.
 - Antibiotic resistance
 - Production of restriction enzymes
 - Production of toxins
 - Production of amino acids
 - Much, much more…

Plasmids/Vectors

- Molecular Biologists use plasmids/vectors in their research
 - Cloning (making many copies) a gene.
 - Expressing a gene.
 - Moving a gene from one organism to another.
 - Sequencing a gene.
- A variety of plasmids have been engineered and can be purchased through biological supply companies. (www.promega.com)
Plasmids/Vectors

- All plasmids/vectors contain **three common features**
- Replicator (ori or origin of replication) = Where the plasmid begins to make a copy of itself.

Plasmids/Vectors

- **Selectable marker** = Isolates those bacteria which contain the plasmid.
- Provides resistance to an antibiotic (ampicillin, kanamycin, tetracycline, chloramphenicol, etc.).
- Bacteria will grow on medium containing these antibiotics only if the bacteria contain a plasmid with the appropriate selectable marker.
Plasmids/Vectors

- **Multiple Cloning Site (polylinker, MCS)** = Region of the plasmid which has unique restriction sites.
- Area where the plasmid can be cut open using restriction enzymes.
- **Restriction enzymes** cut DNA at specific DNA sequences.
Plasmids/Vectors

- In order to study a DNA fragment (e.g., a gene), it needs to be **amplified (copied)** and eventually purified.
- These tasks are accomplished by inserting the DNA into a **Plasmid/vector**.

![Diagram of DNA amplification process]

Transformation - Plasmids can be inserted into bacteria.
- The plasmids replicate hundreds of times in the bacteria.
- The bacteria multiply and make more copies of the plasmids.
- As a result the plasmid with the inserted DNA is **amplified/cloned** many thousands of times.
Plasmids/Vectors

- Not all of the bacteria will take up the plasmid.
- The bacteria which take up the plasmid need to be isolated.
- **Antibiotics** prevent bacteria from growing.
 - *Ampicillin is a common antibiotic.*
- Many plasmids contain a gene for antibiotic resistance as their **selectable marker**.
 - *Ampicillin resistance* is a common selectable marker.

Plasmids/Vectors

- Cells are transformed with a plasmid containing the gene for **antibiotic resistance**.
- The cells are grown on a plate with the growth media LB and an antibiotic such as ampicillin. *(LB-amp)*
- Only the bacterial cells containing the plasmid will grow.
- The bacteria that lack the plasmid will cease to grow or will die.
- This will leave only those bacteria which contain the plasmid.
Plasmids/Vectors

- **Bacterial colony** - A cluster of bacteria which originated from a single cell.
 - All cells in a bacterial colony are genetically identical.

DNA Library

- **DNA Library** - Collection of DNA fragments from an organism stored in vectors and replicated in *E.coli*.
Genomic Library

- **Genomic Library** - Consists of fragments of DNA from the organisms entire genome.
 - Introns
 - Exons
 - Promoters
 - Regulatory regions
 - Contains at least one copy of every DNA sequence
cDNA Library

- **cDNA** (complimentary DNA) - The reverse transcription of mRNA
- A cDNA library represents only the DNA which is expressed as mRNA.
cDNA Library

- Identifies only genes that are expressed.
- Does not contain introns.
- A cDNA library is specific to the mRNA used to make it.
 - Muscle cells, neuronal cells, intestinal cells, embryos, will all express different mRNA and as a result will generate different cDNA libraries.
- Can be used to identify gene splice points

Preparing the *Wolffia* cDNA Library

Purification of mRNA

1. Collect and grind up plants in mild denaturing solution
2. Spin out debris (Tissue, membranes, etc)
3. Treat with DNase (removes DNA)
4. Treat with Phenol (removes protein)

 - Isolate mRNA by binding to Oligo (dT) Beads
 - mRNA binds to column
 - rRNA and tRNA flow through column
 - Elute poly-A + mRNA from column
Preparing the *Wolffia* cDNA Library

Synthesis of cDNA from mRNA

- Purify mRNA
- Prime with oligo-dT
- Synthesize cDNA with RT
- Degradate mRNA
- Anneal second strand primer
- Synthesize second strand of cDNA
- Digest with SfiI
- Clone into SfiI digested pDNR-Lib vector

Preparing the *Wolffia* cDNA Library

SfiI digestion sites of pDNR-Lib

- **SfiI**
 - Con.:
 - GGCCNNNNNGGCC CCGGNNNNNCCGG ➔ GGCCNNNN NGGCC CCGGNN NNNNCCGG

- **SfiIA**
 - GGCCATTACGGCC CCGTAAATGCCGG ➔ GGCCATTA CGGCC CCGGT AATGCCGG

- **SfiIB**
 - GGCCCGCTCGGCC CCGGCCGAGCCGG ➔ GGCCGCCCT CGGCC CCGGC GGAGCCGG
Preparing the *Wolffia* cDNA Library

Cloning W.a. cDNA fragments into the pDNR-Lib polylinker

- Some plasmids/vectors will close without an insert from the cDNA library.
- Bacteria can be transformed by both plasmids with or without an insert and will be antibiotic resistant.
- Both will grow on an LB-amp plate.

Blue/White Screen

- Some plasmids/vectors will close without an insert from the cDNA library.
- Bacteria can be transformed by both plasmids with or without an insert and will be antibiotic resistant.
- Both will grow on an LB-amp plate.
Blue/White Screen

- **Blue/White Screen** = a technique which isolates and identifies those bacteria which contain a plasmid with an insert.
- **β-galactosidase** - An enzyme which breaks down (hydrolyzes) the modified galactose sugar X-gal into the blue pigment 5,5'‐dibromo‐4,4'‐dichloro‐indigo.
- **LacZ** = the gene which codes for the enzyme **β-galactosidase**
- **LacZ** is another type of **selectable marker**.
- **LacZ** is found in the MCS of a plasmid

Blue colonies do not contain a DNA insert

White colonies contain a DNA insert.